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Melting of a Wigner crystal in an ionic dielectric
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Abstract. The melting of a Wigner Crystal of electrons placed into a host polar material is examined as
a function of the density and the temperature. When the coupling to the longitudinal optical modes of
the host medium is turned on, the WC is progressively transformed into a polaronic Wigner crystal. We
estimate the critical density for crystal melting at zero temperature using the Lindeman criterion. We
show that above a certain critical value of the Fröhlich electron-phonon coupling, the melting towards a
quantum liquid of polarons is not possible, and the insulator-to-metal transition is driven by the ionization
of the polarons (polaron dissociation). The phase diagram at finite temperature is obtained by making
use of the same Lindeman criterion. Results are also provided in the case of an anisotropic electron band
mass, showing that the scenario of polaron dissociation can be relevant in anisotropic compounds such as
the superconducting cuprates at rather moderate e-ph couplings.

PACS. 71.30.+h Metal insulator transitions and other electronic transitions – 71.38.+i Polarons and
electron-phonon interactions – 71.10.-w Theories and models of many electron systems

1 Introduction

As it is well-known, the formation of a single polaron is al-
ready a many-body problem, since it deals with the inter-
action of one electron with an infinite number of phonons.
It is thus clear that treating a system of polarons at finite
density is a very complicated task. Some theories have
been proposed so far which neglect the Coulomb inter-
actions, or treat them in the random phase approxima-
tion. The very existence of polaronic bands [1] lies on this
theoretical basis, although, to our knowledge, no rigor-
ous justification of this approach has ever been given in
the literature. Old but reliable results were obtained by
Mahan for low electron-phonon (e-ph) coupling and high
electron density [2], and extended later to intermediate e-
ph coupling by Lemmens et al. [3]. Recently, De Filippis
et al. [4] obtained interesting results valid at lower den-
sities and higher e-ph coupling, giving a more complete
physical insight to the problem in the metallic phase.

A completely different approach of the same problem
can be given starting from the low density regime, where
the particles localize due to the long-range Coulomb re-
pulsion [5–7]. In this limit, the treatment is somehow sim-
plified because the statistical effects between the electrons
can be neglected. The simplest way to introduce the prob-
lem we are dealing with is to consider a Wigner crystal
(WC) of electrons, which is the ground-state of the elec-
tron gas at low density, and dip it into a polar (ionic) host
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material. What are the effects of the polarization on the
stability of the WC?

A polar dielectric is a compound which is characterized
by two main sources of polarization: the electronic polar-
ization, corresponding to the vibrations of the core elec-
trons at optical frequencies (1014−15 s−1), and the ionic
polarization, which is carried by the longitudinal optical
modes in the infra-red region (ωLO ≈ 1013 s−1), corre-
sponding to the relative motion of the positive and nega-
tive ions. An external charge moving in such material [8]
interacts with the dipoles of the dielectric, and produces
a polarization cloud which partially screens its Coulomb
field. The composite state of an electron plus its induced
polarization is called a polaron [9]. Such a quasi-particle
has a finite extension (the polaron radius), a finite self-
energy (the energy required to form the bound state),
and a renormalized mass MP which is generally greater
than the electron band mass. As customary and following
Fr̈ohlich [10], we can define a dimensionless e-ph coupling
as α =

(
m∗/2~3ωLO

)1/2
e2/ε̃, which is the only relevant

parameter for a single isolated polaron. Here m∗ is the
electron band mass and the effective dielectric constant
ε̃ is defined as 1/ε̃ = 1/ε∞ − 1/εs, where εs and ε∞ are
respectively the static and high frequency dielectric con-
stants of the medium.

If we now consider two interacting polarons, two dif-
ferent situations can occur. Under some very specific con-
ditions, the two particles can attract and form a bound
state, sharing the same polarization cloud. The proper-
ties of such composite bosons — the bipolarons — have
been extensively studied, especially in connection to their
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Bose condensation at low enough temperatures. However,
bipolarons can only exist if the ratio η = ε∞/εs is lower
than a critical value ηc ≈ 0.1, and for rather large e-ph
couplings (α > 6− 7) [11]. On the other hand, for η > ηc,
which is quite common in polar materials, two polarons
repel at large distances as 1/εsd. Throughout the present
paper, we will be dealing with compounds where the net
interaction between polarons is repulsive.

As was stated previously, a reliable treatment of the
many-polaron problem can be given starting at low den-
sity, if we assume that the particles localize due to the
long-range Coulomb interactions, forming a Polaronic
Wigner Crystal (PWC). In that case, the polarization of
the host material will react to screen the external charges,
and this will change both their interaction and kinetic en-
ergy, as compared to the ordinary WC of electrons. On
one hand, the total Coulomb interaction energy is shifted
from ∼ e2/Rs to ∼ e2/εsRs, Rs being the mean distance
between two electrons at a given density. On the other
hand, the kinetic energy is also reduced owing to the po-
laron mass, and behaves as ∼ ~2/MpR

2
s . From this simple

argument, we see that the two effects above compete re-
garding the WC stability. While the decrease of the inter-
action energy favours delocalization, the decrease of the
kinetic energy tends to stabilize the crystallized state.

The correct evaluation of the balance between these
two effects is thus essential in order to understand the
melting mechanism occurring for increasing density. It is
particularly instructive to consider the adiabatic limit ob-
tained for vanishing phonon frequency ωLO (α → ∞). In
that case, as given by standard polaron theory [12], while
the polaron radius and energy remain finite, the polaron
mass becomes infinite, and there is no way to get mobile
polarons. Therefore, at zero temperature, the PWC can
only melt through ionization of the electrons from their
polarization potential-wells. The latter must be screened
out by the liberated carriers in the same fashion as for the
usual Mott transition in non-polar semiconductors, and
the system will eventually become metallic [13]. We have
already published a phenomenological Mott-like criterion
which describes the insulator-to-metal transition (IMT) in
this situation [14]:

n1/3
c (ε̃/ε∞)RP ≈ 0.25 (1)

where RP is the polaron radius (the bound state radius),
which is the relevant localization length in our problem.

If one restores a finite phonon frequency (ωLO 6= 0) as
is the case in real materials, the problem becomes more
intricate, since the polarons are a priori mobile (they have
a finite mass). Upon increasing the density, the polarons
themselves could be delocalized without being ionized,
possibly leading to a polaron liquid beyond the transi-
tion. The aim of the present work is to examine carefully
the quantum melting of a PWC in all the e-ph coupling
regimes, as was previously done for the more simple case
of the electron crystal (which is recovered for α = 0). Some
important results have already been published in several
letters [6,14,15]. We provide here the details concerning
the model, approximations and calculations, and give a

more complete description including results at finite tem-
peratures and for anisotropic compounds [16].

The paper is organized as follows. In Section 2, we de-
rive a model for the insulating state which includes both
electron-phonon and electron-electron interactions, and
point out the different approximations involved. Starting
from the Fröhlich model, we assume a crystallized state
for the polarons, and expand the long-range Coulomb in-
teractions between different particles up to second order
in the small displacements relative to their equilibrium
positions, neglecting anharmonicity and exchange effects.
It can be demonstrated [15,16] that the resulting dipole-
dipole interactions between different electrons are respon-
sible for the dispersion of the collective modes of the PWC.
Furthermore, above a certain critical density, the dipolar
terms can lead to a phonon instability of the polaron lat-
tice, corresponding to the spontaneous excitation of long-
wavelength transverse modes. This phenomenon, as well
as its consequences on the properties of the dielectric con-
stant of the system, will be extensively analysed in a forth-
coming paper [17].

In the present work, we will neglect such non-local
interaction terms, restricting ourselves to the mean-field
Wigner approximation. This corresponds to including the
many-body effects through an effective local potential act-
ing on each particle. Hence, the many-polaron problem is
reduced to the problem of a single polaron in an exter-
nal potential. Taking advantage of this approximation, in
Section 3 we study the PWC in the framework of Feyn-
man’s path-integral method [18], which is known to give
reliable analytical results at any values of the e-ph cou-
pling.

In Section 4, we examine the insulator-to-metal tran-
sition occurring for increasing density (at zero tempera-
ture) in terms of the Lindemann criterion, as was done
by Nozières and Pines for the electron crystal [19]. Since
the polaron is a composite particle, we argue that there
are two different Lindemann criteria to be considered: one
for the center-of-mass motion, which describes the melt-
ing as in the ordinary WC, and one for the relative dis-
placement between the electron and its polarization cloud,
which describes the ionization of the polarons. This allows
us to distinguish between two different melting mecha-
nisms, depending on the e-ph coupling strength. At weak
or moderate couplings (α < α∗), the situation is very
much the same as in the bare electron crystal, i.e. the
melting is driven by the increasing fluctuations of the lo-
calized particles. On the other hand, at strong e-ph cou-
pling (α > α∗), i.e. at low but finite ωLO, the crystal
melting is due to the dissociation of the polarons. In that
case, the electrons cannot carry with them their phonon
clouds in the metallic phase, and the melting towards a de-
generate polaron liquid can be excluded. We next extend
the results to finite temperatures, and derive an approxi-
mate T vs. n phase diagram for the many-polaron prob-
lem. For an application to the superconducting cuprates,
we finally generalize our treatment to systems where the
electron band mass is an anisotropic quantity. The results
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Table 1. Critical density n
(ii)
c (cm−3) and coupling α∗ (see

text) [34].

α∗ n
(ii)
c (m∗ = me) n

(ii)
c (m∗ = 2me)

isotropic (3D) 7× 5 6× 1018 5× 1019

anisotropic (2D) 3× 2 8× 1019 6× 1020

presented in Table 1 suggest that polaron dissociation
could be a real physical possibility in such compounds.

2 Model and approximations

In this section, we derive our basic model for the polaron
crystal. Let us consider a polar material, characterized
by the three parameters aforementioned: ωLO, εs and ε∞.
We next consider an ideal doping procedure, which con-
sists in introducing into this “host” material a finite den-
sity of electrons, which we express as n = (4πR3

s/3)−1,
plus a rigid jellium which exactly compensates the nega-
tive charges. Owing to its polarizability, the host crystal
responds to these excess charges. If we neglect magnetic
effects, the total interaction energy is given by standard
laws of electrostatics as [12]:

EI =
1

4π

∫∫
E · Ḋ d3r dt (2)

where time integrations must be carried out along a path
satisfying the equations of motion. If we suppose that the
localization length scales of our problem are larger than
the anion-cation distance in the host material, the latter
can be treated as a continuous medium, and we can con-
sider the total electric field E(r) and the electric displace-
ment D(r) due to the doping charges (electrons plus jel-
lium) as macroscopic fields. Such a treatment is standard
in polaron theory, and leads to the well-known Landau-
Fröhlich model [9,10]. The two quantities above defined
are related to the polarization field P through the rela-
tion D = E + 4πP, which can be used to eliminate E,
and derive a Lagrangian which only depends on the ex-
cess charges. Following Fröhlich, we separate two sources
of polarization: P = P0 + Pir. P0 corresponds to high
frequency oscillating charges and can be included through
the optical dielectric constant ε∞. Pir is due to the ionic
distortion, and vibrates at a frequency ωLO in the infra-red
range. One obtains the following interaction Lagrangian
(see Ref. [12] for more details about this derivation):

LI = − 1
8πε∞

∫
D2 +

∫
Pir · D

+
2πε̃
ω2

LO

∫ (
Ṗir

2 − ω2
LOP

2
ir

)
(3)

where Pir and (4πε̃/ω2
LO) Ṗir are conjugate moments,

and integrations run over the entire space (d3r in the
integrands has been omitted). The different terms in

equation (3) represent respectively the interactions be-
tween the excess charges, between the charges and the
longitudinal optical phonons, and the free-phonon La-
grangian. We can now specify the nature of the doping
charges — say electrons and positive jellium, but the
same applies to holes and negative jellium — by writing
D = D− + D+, where

D− =
∑
i

D−i = −e
∑
i

r− ri
|r− ri|3

, (4)

ri being the electron coordinate. We will come back later
on the precise formulation of the term D+ due to the rigid
jellium.

Separating explicitly the two parts of the electric dis-
placement, and adding the kinetic energy of the free elec-
trons, one gets the following many-body Lagrangian:

L =
∑
i

m∗

2
ṙ2
i +

2πε̃
ω2

LO

∫ (
Ṗ 2

ir − ω2
LOP

2
ir

)
− 1

8πε∞

∫
D+ ·D+ − 1

8πε∞

∫ ∑
i6=j

D−i ·D−j

− 1
4πε∞

∫
D+ · (

∑
i

D−i ) +
∫

Pir · (
∑
i

D−i + D+).

(5)

The interacting terms in (5) now correspond to the self-
energy of the jellium, the Coulomb interactions among dif-
ferent electrons, the electron-jellium, electron-phonon and
jellium-phonon interactions. Since the jellium is assumed
to be rigid, it is convenient to introduce the polarization
field which only responds to the electron motion by mak-
ing use of the following transformation:

P̃ir = Pir −
1

4πε̃
D+ (6)

so that (5) becomes:

L =
∑
i

m∗

2
ṙ2
i +

2πε̃
ω2

LO

∫ (
P̃ 2

ir − ω2
LOP̃

2
ir

)
− 1

8πεs

∫
D+ ·D+ − 1

8πε∞

∫ ∑
i6=j

D−i ·D−j

− 1
4πεs

∫
D+ · (

∑
i

D−i ) +
∫

P̃ir · (
∑
i

D−i ) (7)

(the phonon-jellium interaction has disappeared, and the
remaining terms involving the jellium are now divided by
εs). The many-body Lagrangian in its final form (7) de-
pends on the following parameters: (i) the electron density
n; (ii) the parameters of the host material m∗, εs, ε∞, ωLO,
which determine the e-ph coupling α.
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2.1 Phonon integration

The exact partition function of the system can be ex-
pressed in the path integral formulation as:

Z = Tr(e−βH) =
∫

eS D (path) (8)

where path integrals run over all the electron coordinates
and on the polarization field. S is defined as usual as the
integral of L in imaginary time (t = iτ , β−1 being the
temperature, and taking ~ = kB = 1). The trace operation
corresponds to integrating over all possible closed trajec-
tories. Since the terms depending on the polarization are
quadratic, the field P̃ir can be exactly integrated out [18].
As a result, the total effective action for the electrons is
the sum of three terms:

S({ri}) = Sjellium + Se({ri}) + Se−ph({ri}). (9)

The first term is constant at fixed density and does not
depend on the state of the system:

Sjellium = − β

8πεs

∫
D+ ·D+. (10)

The second term in (9) is the electronic part:

Se({ri}) =
∑
i

m∗

2

∫ β

0

ṙ2
i dτ− 1

8πε∞

∫ β

0

∫ ∑
i6=j

D−i ·D−j dτ

− 1
4πεs

∫ β

0

∫
D+ · (

∑
i

D−i )dτ. (11)

It contains the electron kinetic energy, the instantaneous
Coulomb repulsion between the electrons, and the inter-
action between the electrons and the jellium.

The electron-phonon coupling effects are included in
Se−ph, which is given by:

Se−ph({ri}) =
∑
i,j

ωLOe
2

4ε̃

∫ β

0

∫ β

0

GωLO(β, τ − σ)
|ri(τ) − rj(σ)| dτdσ.

(12)

We have introduced the phonon propagatorGω(β, τ−σ) =
(n̄+1)e−ω|τ−σ|+ n̄eω|τ−σ|, together with n̄ = (eβω−1)−1.
Formula (12) represents the retarded interactions between
electrons, mediated by the lattice polarization: the diag-
onal terms (i = j) correspond to the interaction of each
electron with itself, i.e. the polaron effect, while the off-
diagonal terms (i 6= j) give a retarded attraction between
electrons i and j.

The above expressions (9–12) are valid at any temper-
ature. We will now apply our hypothesis of crystallization
at low densities, and make use of several approximations.

2.2 Model for the crystallized state

Let us first consider the jellium. We will assume from now
on that it is constituted of spheres of radius Rs with a
uniform positive charge density ρ+ = e/

(
4πR3

s/3
)
. Each

sphere, which carries a total charge +e, is supposed to
be centered on the sites {Ri} of a Bravais lattice. This
approximation is intermediate between considering actual
doping ion potentials, and a jellium uniformly spread out
in the system. There is a small overlap between adjacent
spheres, that we will neglect in the evaluation of the elec-
trostatic energy. This is convenient to evaluate the jellium-
jellium and the electron-jellium interaction terms. In par-
ticular, one can write:

D+ (r) =
∑
i

D+
i (r) (13)

where

D+
i (r) =


e

4πR3
s

(r−Ri) ; if |r−Ri| < Rs

e

4π
r−Ri

|r−Ri|3
; otherwise

so that

1
8πεs

∫
D+
i ·D+

i =
3e2

5εsRs

1
8πεs

∑
i6=j

∫
D+
i ·D+

j =
1
2

∑
i6=j

e2

εs |Ri −Rj|
· (14)

We next assume that the electrons are localized around
the sites Ri of the same Bravais lattice, and we introduce
the small displacements ui = ri −Ri, so that

1
4πεs

∫
(i6=j)

D+
i ·D−j = − e2

εs |Ri −Rj − uj |
1

4πεs

∫
D+
i ·D−i = − 3e2

2εsRs
+
m∗

2
ω2

W

εs
u2
i (15)

where we have defined ω2
W = e2/m∗R3

s = ω2
p/3, ωp being

the electron plasma frequency. Both Se and Se−ph can be
decomposed into diagonal (i = j) and off-diagonal (i 6= j)
terms, i.e.:

Se = − e2

2ε∞

∑
i6=j

∫ β

0

1
|Ri −Rj + ui(τ)− ui(τ)|dτ

−
∑
i

∫ β

0

[
9e2

10εsRs
+
m∗

2
u̇2
i (τ) +

m∗

2
ω2

W

εs
u2
i (τ)

]
dτ

and

Se−ph =
∑
i

ωLOe
2

4ε̃

∫ β

0

∫ β

0

GωLO(β, τ − σ)
|ui(τ)− ui(σ)| dτdσ

+
∑
i6=j

ωLOe
2

4ε̃

∫ β

0

∫ β

0

GωLO(β, τ − σ)
|Ri −Rj + ui(τ) − ui(σ)|dτdσ.
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Our next approximation consists in expanding the action
up to second order in the {ui}, thus ignoring all the an-
harmonic and higher order contributions. After some ele-
mentary algebra, one gets:

S ({ui}) =
∑
i

Si +
1
2

∑
i6=j

Sij (16)

with

Si = −β 9e2

10εsRs
−
∫ β

0

[
m∗

2
u̇2
i (τ) +

m∗

2
ω2

W

εs
u2
i (τ)

]
dτ

+
ωLOe

2

4ε̃

∫ β

0

∫ β

0

GωLO(β, τ − σ)
|ui(τ)− ui(σ)| dτdσ (17)

and

Sij = − e2

ε∞

∑
αγ

∫ β

0

Λαγij u
α
i (τ) uγj (τ) dτ

+
ωLOe

2

2ε̃

∑
αγ

∫ β

0

∫ β

0

Λαγij GωLO(β, τ −σ)uαi (τ) uγj (σ) dτdσ

(18)

where the indices α, γ = (x, y, z) denote the cartesian
coordinates. We have also defined the dipolar matrix
elements:

Λαγij =
δαγR

2
ij − 3RαijR

γ
ij

R5
ij

· (19)

Expressions (16–18) constitute our basic model for the po-
laron crystal. Since we focus on the insulating state at low
density, the action S can be treated semi-classically, i.e.
neglecting the exchange between the fermions and quan-
tum statistical effects.

2.3 Comparison with the electron crystal

Our model (16) was obtained by making use of the follow-
ing approximations: (i) we consider a particular structure
for the jellium, (ii) we expand the off-diagonal part of the
action up to second order in the displacements ui, and (iii)
we neglect the exchange between different electrons. In or-
der to analyse in more detail the consequences of these as-
sumptions, we can compare our results with the previous
treatments of the electron crystal. Carr [20] demonstrated
that the energy per electron in a WC with bcc symmetry
can be expressed as an expansion in powers of R−1/2

s . In-
troducing the dimensionless density parameter rs = Rs/a0

(a0 = ~2/mee
2 ≈ 0.53 Å is the Bohr radius) and taking

the Rydberg as the energy unit, the result reads

E =
−1.792
rs

+
2.66

r
3/2
s

+
b

r2
s

+O(r5/2
s ) +O

(
e−r

1/2
s

)
(20)

with b < 1. Basically, our three approximations above con-
sist in neglecting all the terms in powers of rs lower than

−3/2 in (20). In fact, the first assumption slightly over-
estimates the Madelung energy, whose numerical value is
lowered from −1.792/rs to −1.8/rs. The second hypothe-
sis consists in neglecting the anharmonic (b/r2

s ) and higher
order terms. These terms can become important close to
the melting point, and can change its numerical deter-
mination, but do not affect qualitatively the physics of
the problem. Our last approximation is to neglect all the
terms proportional to the overlap between the wavefunc-
tions of different localized electrons. The corresponding
energy terms in (20), i.e. the exchange terms, fall off ex-
ponentially with r

1/2
s . As pointed out by Carr, they are

negligible up to rs ≈ 10. In the polaron crystal, where
localization is more efficient due to the e-ph coupling, it
is quite reasonable to neglect them in the density range
of interest (these terms are responsible for the magnetic
properties of the crystal, that we do not consider here).

3 The mean-field Wigner approximation:
solution by the Feynman method

In the following, we will restrain ourselves to the diago-
nal part of the action S =

∑
i Si, neglecting the dipolar

terms Sij . This is generally called the Wigner approxima-
tion. It is sensitive since, using Gauss’ theorem, it can
be easily shown that the total mean electric field of a
particular sphere (averaged in time), including the jel-
lium, the electron, and the polarization field, vanishes for
|ri − Ri| > Rs [6]. the potential of In other words, two
different Wigner spheres can only interact through the
deviations of ri from equilibrium, and that goes beyond
the mean-field approximation. Each sphere is then on the
average an independent entity, and the effect of the other
particles is already included in the harmonic potential of
equation (15). At this stage, all the electrons localized in
their jellium spheres are equivalent and uncoupled, so that
the system is fully described by any of the single-particle
actions (17) — i.e. we can take S = Si. As was stated
in the introduction, the off-diagonal elements Sij will be
treated in a further publication.

The retarded interaction in (17), which is responsible
for polaron formation, cannot be integrated exactly. Fol-
lowing Feynman [18], we introduce a quadratic trial action
of the form

S0 = −m
∗

2

∫
u̇2dτ − m∗

2
ω2

W

εs

∫
u2dτ

− Kw

8

∫∫
|u(t)− u(s)|2Gw(β, τ − σ)dτ dσ, (21)

whose parameters K and w will be determined variation-
ally (here ui has been replaced by the coordinate u of the
only electron present). It can be seen that (21) corresponds
to the following two-body Lagrangian

L0 =
m∗

2
u̇2 +

M

2
Ẋ2 − K

2
(u−X)2 − m∗

2
ω2

W

εs
u2 (22)
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m*, u

aux. particle
M,X

spring
K

Wigner potential

Fig. 1. The classical model corresponding to the action (21):
the polarization cloud is replaced by a fictitious particle of
mass M .

after the integration of X has been carried out. This model
describes an electron subject to an external harmonic po-
tential and bound with a spring to a fictitious particle of
mass M and coordinate X. The latter represents the po-
larization cloud associated to the electron (see Fig. 1). The
constant K, which measures the strength of the retarded
attraction, can be written as K = Mw2.

The Lagrangian (22) can be diagonalized into two har-
monic modes u1 and u2, whose eigenfrequencies α1 and
α2 are given by:

α2
1,2 =

v2 + ω2
W/εs

2
∓

√
(v2 + ω2

W/εs)
2 − 4w2ω2

W/εs

2
·

(23)

We have introduced the shortcut notation v = (K/µ)1/2

for the characteristic frequency of the two-body model
(µ = m∗M/ (m∗ +M) is the reduced mass). The two
eigenfrequencies obey the following relations:

α2
1 + α2

2 = v2 + ω2
W/εs

α1α2 = wωW/
√
εs (24)

α1 ≤ w ≤ α2.

Finally, the mass M of the auxiliary particle can be writ-
ten as:

M

m∗
=
(

1− α2
1

w2

)(
α2

2

w2
− 1
)
, (25)

and the polaron mass is defined as:

MP = m∗ +M. (26)

If we introduce the quantities

A1 =
w2 − α2

1

α2
2 − α2

1

, A2 =
α2

2 − w2

α2
2 − α2

1

,

the relation between the real coordinates and the normal
modes is simply:

u = A1u1 +A2u2

X =
w2

α2
2 − α2

1

(u1 − u2) (27)

α1 ω

Ι(ω)

ωLO α2

overall polaron
motion

polaron internal
transitions

phonons
(host lattice)

Fig. 2. Schematic absorption spectrum of the polaron crystal
within Wigner’s approximation. The two energy scales α1 and
α2 are well separated, and the (host) phonon frequency lies in
between.

and the diagonalized Lagrangian can be expressed in
canonical form:

L0 =
1
2
A1u̇

2
1 +

1
2
A2u̇

2
2 −

1
2
A1α

2
1u

2
1 −

1
2
A2α

2
2u

2
2. (28)

3.1 The low density regime

At very low densities (rs → ∞, ωW ≈ 0), the polarons
are so far apart that their properties are unchanged from
the single polaron case. In other words, the localizing po-
tential V (u) = m∗ω2

Wu
2/2εs acting on the electron is a

perturbation with respect to the polaron energy, and the
eigenfrequencies (23) can be expanded for small ω2

W/εs,
which gives:

α1 →
√
m∗

MP

ωW√
εs
≡ ωext

α2 → v. (29)

(ωext is defined as the frequency of vibration of a particle
of mass MP in a harmonic potential whose spring constant
ism∗ω2

W/εs, while v is the internal frequency of an isolated
polaron [21]). The corresponding eigenmodes are:

u1 → R =
m∗u +MX

MP

u2 → r = u−X. (30)

These two independent modes correspond respectively to
the vibration of the polaron center-of-mass, and to the
vibration of the electron inside the polarization potential
well. We shall call them respectively the external and the
internal degree of freedom. It can be seen from expres-
sions (29) that in the dilute regime, the external and inter-
nal energy scales are well separated, and the polaron can
follow the vibrations imposed by the external potential as
if it was a rigid particle. Basically, α1 and α2 give the ex-
citation spectrum of the polaron crystal in the framework
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of the Wigner approximation, as is sketched in Figure 2.
(note that the electron can also be excited towards a free
state outside the polaron potential; the corresponding fre-
quency, which is higher than α2, is not shown here).

3.2 The crossover regime

As was noted in the previous section, the localizing Wigner
potential forces the polaron center-of-mass to vibrate with
a frequency ωext, which increases with increasing density.
However, the polaron is a composite particle, and its veloc-
ity is physically limited by the characteristic frequency of
the phonon cloud: when ωext approaches ωLO, the phonons
are too slow to “follow” the overall motion, and only the
electronic degree of freedom oscillates. In that case, both
α1 and α2 can deviate significantly from their asymptotic
values (29). If the density is further increased, the excess
kinetic energy is transferred to the internal degree of free-
dom and the concept of a rigid polaron vibrating in an
external potential breaks down. The crossover density is
roughly given by the condition:

ωext ≈ ωLO (31)

that we express using (29) as:

(
m∗

me

)
rs
ε∞
≈
[(

m∗

MP

)
4η

(1− η)4α
4

]1/3

,

where η = ε∞/εs. In the limit of strong e-ph coupling (α &
6), the mass of an isolated polaron is well approximated
by MP/m

∗ ≈ 0.02α4 [18,26], so that equation (31) can be
expressed as:

(
m∗

me

)
rs
ε∞
≈
[

200
η

(1− η)4

]1/3

(32)

and the crossover density becomes independent on the e-
ph coupling. As an example, if we take m∗ = me, εs = 30
and ε∞ = 5, the crossover region corresponds to rs ≈ 20.
In the opposite limit (α→ 0), the phonon frequency tends
to infinity, so that ωext never reaches the value ωLO. In
that case, the internal structure of the polarons can safely
be neglected, and the polaron crystal tends to an ordinary
electron crystal.

3.3 Results of the variational procedure

As in the case of the single polaron problem, Feynman’s
variational method gives, for any α, the best analytical
upper bound for the free energy F . This is obtained by
minimizing the following expression:

F = F0 −
1
β
〈S − S0〉 (33)
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Fig. 3. The energy per polaron in the crystallized state versus
rs (the single polaron value EP, corresponding to the limit
rs =∞, has been subtracted out). From top to bottom α = 0
(electron crystal), α = 3, 5, 7, 10. The energy unit is meV.
In this and the following figures, the parameters of the host
lattice are εs = 30, ε∞ = 5, m∗ = me.

where the term F0 is defined as

e−βF0 =
∫
D (path) eS0 (34)

and 〈· · · 〉 stands for
∫
D (path) (. . . )eS0/

∫
D (path) eS0

(path integrations must be carried out on closed trajec-
tories). The calculation of the functional (33) to be min-
imized follows the lines of Feynman’s work (details are
presented in the Appendix). The ground-state energy E
at zero temperature can be obtained by taking the limit
β →∞ in the preceding expressions. The result is:

E = C0 +
3
2

(α1 + α2 − w)− 3(w2 − α2
1)(α2

2 − w2)
4(α1 + α2)w2

− α√
π

∫ ∞
0

e−t dt√
A1
α1

(1− e−α1t) + A2
α2

(1− e−α2t)
(35)

where all frequencies are expressed in units of ωLO, and
C0 = −(9ε̃2α2/5εsrs)(me/m

∗). The last integral is non
elementary and must be calculated numerically. α1,2 are
taken as the two independent variational parameters, and
w is related to α1,2 through (24). The expression (35), af-
ter minimization, represents the energy per particle of the
PWC in the Wigner approximation. The result is sketched
in Figure 3 for different values of α. It is interesting to
note that, upon increasing α, the evolution from a WC
of electrons towards a PWC is gradual. In fact, all the
curves in Figure 3 have the same behaviour, and the only
difference comes from the fact that the minimum of E
becomes more pronounced and shifts to higher densities.
This is not surprising, since it is known that the formation
of large polarons is not a real phase transition, but rather
a continuous crossover [22].
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3.3.1 Eigenfrequencies

The three frequencies w, α1 and α2 are illustrated in
Figure 4 as a function of the density, for two different
values of α. As noted above, at weak e-ph coupling, the
phonon cloud is fast and it can easily follow the polaron
motion at any density. The external frequency α1 is pro-
portional to ωW, while α2, which tends to w in this limit,
is almost density independent (see inset). The two fre-
quencies are always well separated, and the polaron can
vibrate as if it was a rigid particle.

On the other hand, at intermediate and strong α, the
internal and external degrees of freedom are fully decou-
pled only at low density (see main plot). When we reach
the crossover region (indicated by an arrow), the exter-
nal frequency “saturates” around ωLO: the phonon cloud
cannot follow the vibrations imposed by the Wigner po-
tential, and the polaron center-of-mass is virtually frozen.
Upon increasing the density, the excess kinetic energy is
thus transferred to the internal degree of freedom, and α2

becomes proportional to ωW.

3.3.2 Polaron mass

In Figure 5 we illustrate the behaviour of MP as a func-
tion of rs, for different values of α. It can be seen that MP

always increases with the density when one approaches
the crossover regime. A similar effect is well-known for
an isolated polaron moving at a finite velocity v [23].
If the quasi-particle kinetic energy MPv2/2 reaches the
phonon energy, the effective polaron mass increases be-
cause phonons can be emitted from the polarization cloud
in an incoherent way (the equivalent of Cherenkov effect in
transparent media). If we consider a polaron in a Wigner
sphere, whose average velocity is v ≈ ωext

√
~/MPωext, it

1
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Fig. 5. The polaron mass MP, normalized by the single
polaron value, for α = 3, 6, 10.

is easy to verify that the condition MPv2/2 ≈ ~ωLO gives
exactly the crossover condition (31).

4 The insulator-to-metal transition

The melting of the ordinary electron crystal at zero tem-
perature has been extensively studied in the literature,
and there exist many different criteria which allow to eval-
uate the critical density for the transition (see Care [24] for
a review). A particularly simple approach was applied by
Nozières and Pines [19], which is based on the Lindemann
criterion. This phenomenological criterion, generally used
to describe the thermal melting of the atomic lattices,
states that the crystal is unstable when the spatial fluc-
tuations of each particle around its equilibrium position
exceed some fraction of the inter-particle distance. Such
criterion will be generalized here to the case of a PWC,
and will be used at both zero and finite temperature in
order to describe qualitatively the insulator-to-metal tran-
sition.

4.1 Lindemann criterion

Calling u = (x, y, z) the coordinate of a localized electron
in an ordinary Wigner crystal, the Lindemann criterion
states that the crystal melts when

〈δu2〉1/2/Rs > δ

where δ is a phenomenological constant usually taken as
δ ≈ 0.25. In the Wigner approximation, the average zero-
point displacement in each space direction (say x) is given
at zero temperature by:

〈
δx2
〉1/2

=
(

~
2meωW

)1/2

. (36)

If we consider three dispersionless modes of equal fre-
quency ωW = ωp/

√
3, as is the case if we neglect dipole-

dipole interactions, we get a critical density parameter
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rW
c = 64, which is close to the Monte-Carlo result (rW

c =
100±20 in 3D, [25]). Of course, this criterion is only quali-
tative and the resulting melting density is very sensitive to
the choice of δ, and moreover it does not give any precise
information about the nature of the ground-state beyond
the melting point. However, especially in the polaronic
case, we shall see that it gives a good insight in the physics
of the problem.

The treatment that we have described in the previ-
ous sections, which reduces the many-polaron problem to
the problem of a single polaron in an effective potential,
gives reliable results for the insulating state at any value
of the e-ph coupling. It was shown in Section 3 that the
system passes continuously from an ordinary Wigner lat-
tice at weak α to a lattice of polarons at strong α, with no
symmetry breaking between the two limits. However, we
will show here that a definite distinction between the two
cases comes from the melting mechanisms. Indeed, tak-
ing into account the composite nature of the polarons, we
can introduce two different Lindemann criteria, whether
we analyse the fluctuation of the polaron as a whole, or
rather the fluctuation of the electron with respect to the
polarization field. to melt. Using the definitions (30) of the
center-of-mass R and of the relative coordinate r, we can
write the following conditions:

(i)〈δR2〉1/2/Rs > 0.25

(ii)〈δr2〉1/2/Rs > 0.25.

The former gives the critical value r
(i)
c for the melting

towards a polaron liquid. The latter gives the critical value
r

(ii)
c for polaron dissociation. The calculation of 〈δR2〉 and
〈δr2〉 in terms of the variational parameters is presented
in the appendix. The result at T = 0 is (all frequencies
are expressed in units of ωLO):

〈δR2〉1/2/Rs =
(
ω2

W

4α

)1/3
m∗

MP

√
A1

α1

(α2

w

)4

+
A2

α2

(α1

w

)4

〈δr2〉1/2/Rs =
(
ω2

W

4α

)1/3 1
α2

2 − α2
1

√
α2

1

A1
+
α2

2

A2
·

When the e-ph coupling vanishes (MP → m∗ and R→ u),
equation (i) reduces to the ordinary Lindemann criterion
for the WC, and the transition is due to fluctuations of the
(weakly renormalized) electrons. On the other hand, the
fluctuation of the internal coordinate gives a measure of
the polaron radius [26], so that criterion (ii) can be written
as RP/Rs = const., which closely resembles equation (1)
above. As a matter of fact, we can consider the second
criterion as a generalization to finite phonon frequencies of
the dissociation argument given in the introduction (which
we have shown to be valid in the limit ωLO → 0, when the
potential acting on the electron is completely static).

4.2 Transition at T = 0

We are now in a position to analyse the IMT for any val-
ues of α. Figure 6 shows the calculated ratios which enter
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Fig. 6. The ratios which enter in the Lindemann criteria
(i) and (ii): a) 〈δR2〉1/2/Rs for α = 1, 3, 5, 7, 10, 100; b)
〈δr2〉1/2/Rs for α = 1 (dashed line), α = 3 (dotted line), α = 10
(full line). The horizontal line corresponds to the phenomeno-
logical melting value δ = 0.25.

in the conditions (i) and (ii), as functions of rs, for dif-
ferent values of α. One observes that for a fixed α, while
〈δr2〉1/2/Rs always increases with increasing density (all
the curves in Figure 6b have roughly the same behaviour),
the center-of-mass fluctuation 〈δR2〉1/2/Rs becomes bell
shaped for sufficiently large α (it changes its slope exactly
where, according to the argument of Sect. 3.2, the inter-
nal structure of the polaron becomes important — see
Fig. 6a). In addition, the maximum value of 〈δR2〉1/2/Rs

decreases with increasing α. Remembering that the tran-
sition occurs when one of the fluctuation ratios reaches
the value 0.25, we see that there exists a certain criti-
cal value α∗ above which the crystal melting à la Wigner
is prevented, and the driving mechanism switches to the
polaron dissociation, typical of the static limit. An impor-
tant consequence of this result is that, for α > α∗, the
polarons do not survive beyond the IMT. In other words,
in the strong e-ph coupling limit, a liquid state of large
polarons cannot exist at zero temperature. With the pa-
rameters of Figure 6, we find α∗ ' 7.5.

Figure 7 illustrates the approximate phase diagram ob-
tained from the two Lindemann criteria at T = 0. The full
line corresponds to criterion (i). We see that r(i)

c decreases
with increasing α (the corresponding critical density in-
creases). This can be easily understood in terms of the
asymptotic behaviour of Section 3.1. As we have stated
above, at low density, we can neglect the composite na-
ture of the polaron and its mean square displacement in
an external potential of frequency ωext is given by:

〈δR2〉1/2 '
√

~
2MPωext

, (37)

which fits very well the low density part of 〈δR2〉1/2/Rs

(right side of Fig. 6a). In the weak coupling regime (in
practice for all α < α∗), we can use this formula to
calculate the critical rs for crystal melting. The result
can be expressed in terms of the critical parameter rW

c
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of the ordinary electron crystal as:

r(i)
c ' rW

c εs
me

MP
· (38)

The competition between the kinetic and potential energy
is clearly visible in equation (38): if the mass of the car-
riers is strong enough, despite the static screening of the
charges which reduces the Coulomb interactions, the crys-
tallization is favored with respect to the ordinary WC of
electrons. The melting curve corresponding to this approx-
imation is shown in Figure 7 (dotted line: we see that (38)
slightly underestimates the critical density, especially for
α close to α∗). Since the polarons do not dissociate at
the transition, we expect the metallic state beyond n

(i)
c

to be either a renormalized electron liquid (region I) or a
degenerate polaron liquid (region II).

For α > α∗, the IMT is described by the dissociation
mechanism (ii), and the critical density is almost constant
(in a nutshell, the crystal is destroyed when the polarons
start to overlap). In this range, although the polarons do
not survive beyond the transition, the resulting electron
liquid should present both strong e-ph and e-e interactions
(region III). A second possibility is that not all of the po-
larons are destroyed at the transition, because this would
cost too much potential energy, especially in the strong
coupling limit. This can be understood as follows: when
the density of localized polarons is increased, there is a
competition between the increase of 〈δr2〉1/2/Rs due to
the zero-point fluctuations (which destabilizes the PWC),
and the tendency of the system to preserve the poten-
tial energy stored in the polaron bound states (which in
turn should prevent dissociation). A compromise could be
achieved in a hypothetical mixed phase, where some itin-

erant carriers could coexist with the localized polarons. In
fact, some experiments [27] suggest that all the carriers
introduced beyond the critical density are itinerant (their
number being proportional to n − n

(ii)
c ), the density of

localized polarons being kept constant and equal to n(ii)
c .

The properties of such a mixed phase are currently un-
der studies. It is clear, however, that this could be stable
only close to n(ii)

c , while for n� n
(ii)
c , all the interactions

would be screened, and the system would tend to a normal
Fermi liquid.

4.3 Transition at T 6= 0

If we go to finite temperatures, the melting of the polaron
crystal can be studied in terms of the same Lindemann
criteria (i) and (ii) as in the zero temperature case, pro-
vided that we include the effect of thermal fluctuations
in the definition of 〈δR2〉 and 〈δr2〉. The correct result
is given in the appendix (see Eqs. (A.23, A.24)), where
the variational parameters α1 and α2 are now obtained
by minimizing the free energy F given by equation (A.1),
together with (A.4, A.15, A.19). It is known from the sin-
gle polaron case, however, that the upper bound (33) that
one estimates starting from the two-body model (22) only
gives correct results for T < ωLO [16,28]. At higher tem-
peratures, such quantities as the polaron mass MP and
internal frequency α2 are ill-defined, and the treatment
is no longer applicable in this simple form. Nevertheless,
since the characteristic energy scale for the thermal fluc-
tuations of the polaron center-of-mass is α1 < ωLO, we
reasonably expect the thermal melting of the crystal to
occur at temperatures well beyond the limits of validity
of the treatment, as can be verified a posteriori.

In order to understand the basic physics of the prob-
lem, we first restrict ourselves to the low-density regime
as was done in Section 3.1. This allows us to express 〈δR2〉
and 〈δr2〉 by the approximate formulas

〈δR2〉 = (2MPα1)−1 coth
βα1

2
(39)

〈δr2〉 = (2µα2)−1 coth
βα2

2
· (40)

Polaron theory predicts that at temperatures much lower
than ωLO, the properties of each polaron are almost unaf-
fected by thermal fluctuations [26,28]. In that case, we can
consider to a first approximation α2(T ) ≈ α2, MP(T ) ≈
MP, and consequently α1(T ) ≈ α1 (from Eq. (24)). There-
fore, in this simple limit, the only temperature dependence
of the radii (39, 40) comes from the explicit β factor.

In the intermediate and strong coupling regimes (i.e.
where the mechanism of polaron dissociation can become
relevant), since α2 � ωLO, coth(βα2/2) ≈ 1, and we im-
mediately see that the dissociation density does not de-
pend on the temperature:

r(ii)
c (T ) ≈ r(ii)

c (T = 0). (41)
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On the other hand, criterion (i) can be solved to give the
critical temperature for crystal melting:

Tc = ωext/ ln

[(√
rs

r
(i)
c (T=0)

+ 1

)/(√ rs

r
(i)
c (T=0)

− 1

)]
.

(42)

At low temperatures, this equation has two different solu-
tions which correspond respectively to the quantum melt-
ing analysed in Section 4.1, at rs ≈ r(i)

c (T = 0), and to the
classical melting due to thermal fluctuations, at rs →∞.
Let us first expand equation (42) in the classical case:

Tc '
2Ry
εsrs

δ2 ∝ n1/3. (43)

The melting temperature in that case is proportional to
the only relevant energy scale in the problem, i.e. the
strength of the Coulomb interactions [29]. In the quan-
tum limit, i.e. for rs close to the zero temperature value
r

(i)
c (T = 0), Tc can be expressed as:

Tc ' −ωext/ln

[
1
4
rs − r(i)

c (T=0)

r
(i)
c (T=0)

]
(44)

which states that the critical temperature tends to zero at
r

(i)
c (T = 0) with a slope that diverges logarithmically.

In the general case (i.e. at any density and any e-ph
coupling), the Lindemann criteria (i) and (ii) can be accu-
rately evaluated as was indicated at the beginning of this
section. In Figures 8 and 9, we show two characteristic
phase diagrams in the (T, n) plane, which correspond re-
spectively to e-ph coupling constants above and below α∗.
In the strong coupling regime, where n(i)

c > n
(ii)
c (Fig. 8,

α = 10), while quantum fluctuations lead to polaron disso-
ciation, thermal fluctuations lead to the melting through
criterion (i), so that a polaron liquid state can be achieved
by increasing the temperature above Tc. However, a simple
argument shows that it is very unlikely that such polaron
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Fig. 9. The T vs. n phase diagram for α = 7.2 < α∗, as ob-
tained from criteria (i) and (ii). The shaded area corresponds
to temperatures T < Tdeg, where the polaron liquid could
become degenerate.

liquid is degenerate. In fact, the particle statistics become
relevant when the de Broglie thermal length is comparable
to their average distance, i.e.:(

2~2

MPkBT

)1/2

≈ 2Rs. (45)

Therefore, the polaron liquid is expected to behave clas-
sically down to temperatures of the order

Tdeg ≈
me

MP

2× 105K
r2
s

· (46)

If we consider a polaron mass MP ≈ 10me and a density
rs = 100, the resulting Tdeg is of a few Kelvin, while Tc can
be as high as some fraction of ωLO (typically ∼ 100 K).
In conclusion, the phase diagram at strong coupling sep-
arates into three different regions: polaron crystal (at low
density, low temperature), “classical” polaron liquid (at
low density, high temperature), and some liquid state at
high density where the polarons (or at least some of them)
are ionized.

Let us now analyse the situation for α lower than α∗,
where n(i)

c < n
(ii)
c (Fig. 9, α = 7.2). In that case, by in-

creasing either the density or the temperature, the crystal
melting is always driven by criterion (i). Again, the phase
diagram is divided in three regions, but now the polaron
liquid can become degenerate at sufficiently low tempera-
ture (i.e. for T < Tdeg), in the intermediate region between
n

(i)
c and n(ii)

c (shaded area in Fig. 9).

4.4 Extension to the anisotropic case

Both the static (εs) and high frequency (ε∞) dielec-
tric constants have been measured in some undopped
cuprates. For the parent compound La2CuO4, it was
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found [30] εs ≈ 30 and ε∞ ≈ 5. Surprisingly, the static di-
electric constant remains almost isotropic in the three di-
rections of space (c-axis, and ab-plane of cuprates), which
means that the phonons seem to act in the same manner
in these three directions. However, it is known that the
transport properties are incoherent in the c-direction of
CuO2 plane. A possible way to simulate such a specific
situation, is to consider a system where the electron bare
band mass m∗ is highly anisotropic, while the Coulomb
interactions (and the electron-phonon interaction) remain
isotropic. This problem can be studied by considering a
crystallized state of Fröhlich polarons, where the localiz-
ing potential in the Wigner approximation is spherically
symmetric, but the electron effective band masses satisfy
b = mxy/mz � 1.

If we assume b → 0, which is equivalent to confining
the carriers in 2D layers, it is known that the polaron
bound states become anisotropic (in this limit, they are
usually called “surface” polarons [31]). Correspondingly,
the expression (35) for the variational energy at zero tem-
perature must be replaced by:

E = C0 + (α1 + α2 − w)−
(
w2 − α2

1

) (
α2

2 − w2
)

2 (α1 + α2)w2

− α√
π

π

2

∫ ∞
0

e−t dt√
A1
α1

(1− e−α1t) + A2
α2

(1− e−α2t)
· (47)

If we compare this expression with (35), we see that apart
from a numerical coefficient, the function to be minimized
in 2D is equivalent to the one in the 3D case, provided that
we multiply α by a factor 3π/4 (such a scaling relation
was first derived by Peeters et al. [32] in the case of an
isolated polaron). In our case, it is easy to see that, at a
given density, the variational parameters in 2D are given
by the simple relations

α2D
2 (α) = α3D

2 (3πα/4)

α2D
1 (α) = α3D

1 (3πα/4)

so that the phase diagram in the anisotropic case can
be easily deduced from the 3D results (see Fig. 7, grey
lines [33]). The main conclusions are summarized in Ta-
ble 1, for two different values of the electron band mass.
We first observe that the critical coupling above which
polaron dissociation becomes effective is strongly reduced
from α∗ (3D) ≈ 7.5 (which corresponds to ωLO ≈ 6 meV
if we take m∗ = me), to α∗ (2D) ≈ 3.2 (ωLO ≈ 40 meV).
This is reminiscent of the fact that the e-ph coupling has a
stronger effect in lower dimensions. Moreover, we see that
the critical density n(ii)

c is increased: with the parameters
of La2CuO4 (m∗ = 2me, εs = 30, ε∞ = 5 [30,35]), one ob-
tains n(ii)

c ≈ 6× 1020 cm−3, in qualitative agreement with
experiments. These results suggest that the mechanism of
polaron dissociation could be relevant in the description
of the IMT in the high-Tc cuprates. Note however that
it does not mean that the electron motion would become
coherent in the c-direction above the dissociation. The re-
sulting state above the dissociation is out of the goal of
the present paper.

5 Conclusion

In this work, we have attacked the problem of the
insulator-to-metal transition in doped polar semiconduc-
tors. Neglecting disorder, and replacing the doping ions
by a rigid compensating jellium, the two main ingredients
in the problem are: (i) the electron-phonon interaction,
which leads to polaron formation and (ii) the Coulomb
repulsion between the carriers, which causes their crys-
tallization at low density. We have studied the proper-
ties of the insulating crystallized state in the framework
of Wigner’s mean-field approximation. The results show
that, upon increasing the Fröhlich e-ph coupling α, the
Wigner crystal of electrons evolves continuously towards
a polaron crystal. On the other hand, a definite distinc-
tion between the weak and strong e-ph coupling limits
comes from the melting mechanism occurring for increas-
ing density. By applying the Lindemann criterion both to
the polaron center-of-mass R and to the internal coordi-
nate r, we have shown that, at T = 0, the crystal melting
due to the fluctuations of the localized particles is only
possible for α < α∗. In the opposite situation α > α∗,
the IMT is driven by polaron dissociation: the particles
become more and more localized due to the increase in
their effective mass, and the only way to obtain a metallic
state is to ionize the polaron bound states. We have also
analysed the melting at finite temperature, and we have
proposed an approximate T vs. n phase diagram for the
many-polaron problem. Finally, we have shown that if the
carriers are confined in 2D layers, the effect of the e-ph
interactions is strongly enhanced, so that the mechanism
of polaron dissociation can be relevant at rather moderate
couplings (α ≈ 3).

The overall picture which comes out from this work
suggests that large polarons should play an important
role in the superconducting cuprates. Moreover, it will be
shown in a forthcoming paper [17] by fully taking into
account the dipole-dipole interactions between polarons
that, due to the peculiar dielectric properties of the PWC,
if some itinerant carriers could coexist with localized po-
larons, the long-range part of their mutual interactions
would be overscreened. This would lead to a supercon-
ducting instability rather than to an insulator-to-metal
transition, as was already pointed out in reference [15].

It is also interesting to compare our results on the melt-
ing of a PWC to the studies carried out by De Filippis
et al. for the same model, but in the metallic phase [4].
These authors found that at intermediate e-ph coupling
(α ≈ 6), the metallic phase can become unstable with re-
spect to the formation of a Charge Density Wave (CDW),
as the density is decreased down to n ≈ 1018−20 cm−3.
For the same value of α, we find that in the same range of
densities, the PWC becomes unstable with respect to the
formation of a polaron liquid. In this sense, both studies
on the same problem, either starting from the low density
limit or from the high density metallic phase, seem to be
quite consistent. Nevertheless, our analysis suggests that
the melting of the PWC at zero temperature is first or-
der, as is the case for the Mott transiton (the free carrier
density is a discontinuous quantity at the transition). On



S. Fratini and P. Quémerais: Melting of a Wigner crystal in an ionic dielectric 111

the contrary, the occurrence of a CDW instability should
rather be second order (the amplitude of the component
ρq of the electronic density with CDW-wavevector q be-
ing the order parameter). We believe that at stronger cou-
pling, where the polaron dissociation holds, there should
exist a metastability of the metallic phase with respect
to the PWC. This could be related to the fact that the
long-range Coulomb interactions (i.e. both the electron-
electron and the electron-phonon interactions) are com-
pletely unscreened in the crystallized state.

The behaviour of the long-range Coulomb forces be-
ing an essential ingredient to the understanding of this
“intermediate density” physics is also suggested by a re-
cent work by Leggett [36]. Arguing, on the basis of exper-
imental data on the cuprates, that the Coulomb energy at
the metal-superconducting transition is saved in the mid
infra-red range at small q vectors, Leggett has pointed out
that the basic pairing mechanism in high-Tc superconduc-
tors should also involve small in-plane q vectors, and thus
could be due to long-range interactions.

Finally, we would like to mention that the present the-
oretical work can also find applications in different classes
of physical systems. In particular, it was shown by Jackson
and Platzman [37] that the dynamics of ripplons coupled
to a 2D electron set on a film of liquid helium can be
viewed as a 2D Fröhlich polaron problem.

This work received financial support from the European Com-
mission (contract No. ERBFMBICT 961230).

Appendix A: Details of the Feynman
treatment

Here we evaluate the upper bound to the free energy F
according to equation (33), that we rewrite here as

F = F0 +A+B. (A.1)

A.1 Evaluation of the variational free energy F

After the diagonalization has been carried out, the
model (22) represents two independent harmonic
oscillators in three dimensions. The corresponding
partition function is then

Z0 = (2 sinhβα1/2)−3(2 sinhβα2/2)−3. (A.2)

This result must be equivalent to the path integral of the
electronic action (21), including the part corresponding to
the motion of the auxiliary particle X. In other words,

Z0 = (2 sinhβw/2)−3

∫
D (path)eS0[u]. (A.3)

If we equate these two results, and make use of the defi-
nition (34), we find:

F0 =
3
β

log
[

sinhβw/2
2 sinhβα1/2 sinhβα2/2

]
. (A.4)

Let us now calculate the term B = 〈S0〉 /β, which is de-
fined as

B = − C
2β

∫ β

0

∫ β

0

dt dsGw(β, t− s)〈|u(t) − u(s)|2〉
(A.5)

where Gw(β, t − s) is the phonon propagator defined
in Section 2.1, and C = Kw/4. The integrand in B
can be obtained by expanding up to 2nd order in kx the
expression

I(kx, t, s) =
〈

eikx[x(t)−x(s)]
〉

(A.6)

(x is one of the three equivalent cartesian coordinates:
u = (x, y, z)). If we write explicitly the path integral in
the last expression and put f(τ) = ikxδ(τ−t)−ikxδ(τ−s),
equation (A.6) takes the form

I(kx, t, s) ∝
∫
D (path) exp

[
−1

2

∫
ẋ2dτ − ω2

W

2εs

∫
x2dτ

−C
2

∫ ∫
|x(τ) − x(σ)|2Gw(β, τ − σ)dτ dσ

+
∫
f(τ)x(τ)dτ

]
. (A.7)

The calculation of such a Gaussian integral is standard:
first evaluate the function x̄(τ) for which the exponent
is maximum, subject to the boundary condition x̄(0) =
x̄(β) = 0, then (within an unimportant constant) the in-
tegral (A.7) reduces to

I(kx, t, s) = exp
[
−1

2

∫
˙̄x2dτ − ω2

W

2εs

∫
x̄2dτ

−C
2

∫ ∫
|x̄(τ)− x̄(σ)|2Gw(β, τ − σ)dτ dσ

+
∫
f(τ) x̄(τ)dτ

]
(A.8)

which can be simplified to

I(kx, t, s) = exp
{

1
2

∫
f(τ) x̄(τ)dτ

}
= e

ikx
2 [x̄(t)−x̄(s)].

The function x̄(τ) is the solution of the integral equation

ẍ(τ) = 2C
∫

[x(τ) − x(σ)]e−w|τ−σ|dσ +
ω2

W

εs
x(τ) − f(τ)

(A.9)

which can be solved by defining the auxiliary function

X(τ) =
w

2

∫
Gw(β, τ − σ)x(σ)dσ. (A.10)

Now the differential system reads

ẍ(t) =
4C
w

[x(t)−X(t)] +
ω2

W

εs
x(t) − f(t) (A.11)

Ẍ(t) = w2[X(t)− x(t)].
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In fact, the problem is equivalent to solving the equations
of motion of the two-body model (22) under the external
driving force f(τ). After some lengthy algebra, we find

I(kx, t, s) = exp
{
−k

2
x

2
g(t− s)

}
(A.12)

with

g(t− s) =
A1

α1
g1(t− s) +

A2

α2
g2(t− s) (A.13)

and

gi(t− s) =
coshβαi/2− coshαi(t− s− β/2)

sinhβαi
; i = 1, 2.

(A.14)

In the isotropic case, by expanding to second order in k
both equations (A.6, A.12), with k2 = k2

x + k2
y + k2

z (the
three directions are equivalent) and performing the time
integrations in equation (A.5) we obtain

B = − 3C
w(α2

2 − α2
1)

[
α2 coth

βα2

2
− α1 coth

βα1

2

]
.

(A.15)

The term A = −〈S〉 /β is defined as

A =
α√
8β

∫ β

0

∫ β

0

〈
|u(t)− u(s)|−1

〉
GωLO(β, t− s) dt ds.

(A.16)

It can be calculated by introducing the Fourier transform

〈|u(t)− u(s)|−1〉 =
∫

d3k

2π2k2
〈eik·[u(t)−u(s)]〉 (A.17)

=
∫

d3k

2π2k2
I(kx, t− s)I(ky , t− s)I(kz , t− s). (A.18)

The integration over k gives the result

A = − α√
π

1
1− e−β

∫ β

0

dt e−t√
g(t)
· (A.19)

If we take the limit β →∞, and include the constant part
C0 = −(9ε̃2α2/5εsrs)(me/m

∗), the upper bound to the
ground-state energy takes the form

E = C0 +
3
2

(α1 + α2 − w) − 3(w2 − α2
1)(α2

2 − w2)
4(α1 + α2)w2

− α√
π

∫ ∞
0

e−t dt√
A1
α1

(1− e−α1t) + A2
α2

(1− e−α2t)
· (A.20)

A.2 Evaluation of the internal and external
fluctuations

Here we calculate the average displacements of the center-
of-mass and of the relative coordinate, which enter in the

Lindemann criteria (i) and (ii). In each space direction,
since the eigenmodes are independent, we have 〈u1u2〉 =
〈u1〉〈u2〉 so that making use of equations (27, 30), we get
the dimensionless quantities

〈δR2〉
(2m∗ωLO)−1

=
(
m∗

MP

)2 [
A2

1

α4
2

w4
〈δu2

1〉+A2
2

α4
1

w4
〈δu2

2〉
]

〈δr2〉
(2m∗ωLO)−1

=
(

α2
1

α2
2 − α2

1

)2

〈δu2
1〉+

(
α2

2

α2
2 − α2

1

)2

〈δu2
2〉

where

〈δu2
1〉 = (2A1α1)−1 coth

βα1

2
(A.21)

〈δu2
2〉 = (2A2α2)−1 coth

βα2

2
(A.22)

are the r.m.s. displacements of two harmonic oscillators
at finite temperature. Observing that the polaronic length
unit is (2m∗ωLO)−1/2 = (m/m∗)ε̃αa0, we can write√
〈δR2〉
Rs

=
(
ω2

W

4α

)1/3
m∗

MP

×
√
A1

α1

(α2

w

)4

coth
βα1

2
+
A2

α2

(α1

w

)4

coth
βα2

2
(A.23)

√
〈δr2〉
Rs

=
(
ω2

W

4α

)1/3 1
α2

2 − α2
1

×

√
α3

1

A1
coth

βα1

2
+
α2

2

A2
coth

βα2

2
· (A.24)
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